https://encrypted.google.com/search?hl=en&source=hp&q=connectomics&btnG=Google+Search&gbv=2Connectomics is a high-throughput application of neural imaging and histological techniques in order to increase the speed, efficiency, and resolution of maps of the multitude of neural connections in a nervous system. The principal focus of such a project is the brain, although any neural connections could theoretically be mapped by connectomics, including, for example, neuromuscular junctions. The map produced by such a project is called a connectome.
One of the main tools used for connectomics research at the macroscale level is diffusion MRI.[1] The main tool for connectomics research at the microscale level is 3D electron microscopy.[2] To see one of the first micro-connectomes at full-resolution, visit the Open Connectome Project, which is hosting several connectome datasets, including the 12TB dataset from Bock et al. (2011).
[edit]Model Systems
Aside from the human brain, some of the model systems used for connectomics research are the mouse,[3] the fruit fly,[4] the nematode C. elegans,[5][6] and the barn owl.[7]
Comparison to genomics
The human genome project initially faced many of the above criticisms, but was nevertheless completed ahead of schedule and has led to many advances in genetics. Some have argued that analogies can be made between genomics and connectomics, and therefore we should be at least slightly more optimistic about the prospects in connectomics.[15]
No comments:
Post a Comment